CANAL DLL - API specifications:

CanalOpen
long Canal Open(const char *pConfigStr, unsigned long flags)

Opens a CAN channel.

pConfigStr

Physical device to connect to. This is the place to add device specific parameters and filters/masks. This is a text string. It can be a
name, some parameters or whatever the interface creator chooses.The string for usb2can device constists of serial number,can bus
speed,maskfilter.Mask and filter can be omited. ***

Example:
ED123456 ; 125 ; 0x12345678 ; 0x98765432
ED123456 ; 1000
for custom CAN bus speed:
ED123456; 0 ; tseg2 ; tsegl; sjw ; brp; mask; filter ***
ED123456; 0 ; tseg2 ; tsegl; sjw ; brp

flags

device specific flags with a meaning defined by the interface creator.
0x00000001 — enable loopback

0x00000002 — enable silent

0x00000004 - disable auto retransmitions

0x00000008 - enable status messages

returns
handle for open physical interface or <=0 on error. For an interface where there is only one channel the handle has no special
meaning and can only be looked upon as a status return parameter.

*** mask anf filter not implemented yet in currently DLL and usb2can firmware versions

CanalClose
int CanalClose(long handle)

Close the channel and free all allocated resources associated with the channel.

handle
handle for open physical interface.

returns
CANAL error or success code

CanalSend
int Canal Send(long handle, const CANALMSG *pCanMsg)

Send CANAL message. Non blocking function

handle
handle for open physical interface.

pCanMsg
pointer to CANALMSG

returns
CANAL error or success code

CanalBlockingSend

int Canal Bl ockingSend(long handle, const CANALMSG *pCanMsg, unsigned long timeout)

Send CANAL message. Blocking function

handle
handle for open physical interface.

pCanMsg
pointer to CANALMSG

timeout
timeout in milliseconds. 0 to wait forever.

returns
CANAL error or success code

CanalReceive

int CanalReceive(long handle, CANALMSG *pCanMsg)

Receive CANAL message. Non blocking function

handle
handle for open physical interface.

pCanMsg
pointer to CANALMSG struct.

returns
CANAL error or success code

CanalBlockingReceive

int Canal Bl ockingReceive(long handle, const CANALMSG *pCanMsg, unsigned long ti meout)

Receive CANAL message. Blocking function

handle
handle for open physical interface.

pCanMsg
pointer to CANALMSG

timeout
timeout in milliseconds. 0 to wait forever.

returns
CANAL error or success code

CanalDataAvailable

int CanalDataAvailable(long handle)

Check if there is data available in the input queue for this channel that can be fetched with CanalReceive.

handle
handle for open physical interface.

returns
Number of frames available to read.

CanalGetStatus
int Canal GetStatus(long handle, CANALSTATUS *pCanStatus)

Returns a structure that gives some information about the state of the channel. How the information is interpreted is up to the
interface designer. Typical use is for extended error information.

handle
handle for open physical interface.

pCanStatus
Pointer to CANALSTATUS struct.

returns
CANAL error or success code

CanalGetStatistics
int Canal GetStatistics (long handle, CANALSTATISTICS *pCand Statistics)

Return some statistics about the interface. If not implemented for an interface FALSE should always be returned.

handle
handle for open physical interface.

pCanalStatistics
Pointer to CANALSTATISTICS struct.

returns
CANAL error or success code

CanalSetFilter
int Canal SetFilter (long handle, unsigned long filter)

Set the filter for a channel. There is only one filter available. The CanalOpen call can be used to set multiple filters. If not
implemented FALSE should always be returned. Enable filter settings in the open call if possible. If available in the open method this
method can be left unimplemented returning false.

handle
handle for open physical interface.

filter
filter for the interface.

returns
CANAL error or success code

CanalSetMask
int Canal SetMask (long handle, unsigned long mask)

Set the mask for a channel. There is only one mask available. The CanalOpen call can be used to set multiple masks. If not
implemented FALSE should always be returned. Enable mask settings in the open call if possible. If available in the open method
this method can be left unimplemented returning false.

handle
handle for open physical interface.

mask
filter for the interface.

returns
CANAL error or success code

CanalSetBaudrate

int Canal SetBaudrate (long handle, unsigned long baudrate)

Set the bus speed for a channel. The CanalOpen call may be a better place to do this. If not implemented FALSE should always be
returned. Enable baudrate settings in the open call if possible. If available in the open method this method can be left
unimplemented returning false.

handle
handle for open physical interface.

baudrate
the bus speed for the interface.

returns
CANAL error or success code

CanalGetVersion

unsigned long Cana GetVersion (void)

Get the Canal version. This is the version derived from the document that has been used to implement the interface.

returns
Canal version expressed as an unsigned long.

CANAL_MAI N VERSI ON (8)
CANAL_M NOR VERSI ON (8)
CANAL_SUB_ VERSION (8)
0

CanalGetDIIVersion

unsigned long Canal GetDIIVersion (void)

Get the version of the interface implementation. This is the version of the code designed to implement Canal for some specific
hardware.

returns
DLL version expressed as an unsigned long.

DLL_MAI N VERSION (8)
DLL_M NOR VERSI ON (8)
DLL_SUB VERSION (8)
0

CanalGetVendorString

const char * Canal GetV endorString (void)

Get a pointer to a null terminated vendor string for the maker of the interface implementation. This is a string that identifies the
constructor of the interface implementation and can hold copyright and other valid information.

returns
Pointer to a vendor string.

example:
usb2can_firmware_version ; usb2can_ hardware_version ; canal_version ; dll_version ; vendor

CanalGetDriverinfo ***
const char * CanalGetDriverInfo(void)

This call returns a documentation object in XML form of the configuration string for the driver. This string can be used to help users
to enter the configuration data in an application which allows for this.

returns
Pointer to a configuration string or NULL if no configuration string is available.

*** not imlemented yet

CANAL error codes

CANAL_ERROR_SUCCESS 0 | AllisOK.
CANAL_ERROR_BAUDRATE 1 | Baudrate error.
CANAL_ERROR_BUS_OFF 2 | Bus off error
CANAL_ERROR_BUS_PASSIVE 3 | Bus Passive error
CANAL_ERROR_BUS_WARNING 4 | Buswarning error
CANAL_ERROR_CAN_ID 5 | Invalid CANID
CANAL_ERROR_CAN_MESSAGE 6 | Invalid CAN message
CANAL_ERROR_CHANNEL 7 | Invalid channel
CANAL_ERROR_FIFO_EMPTY 8 | Noting available to read. FIFO is empty
CANAL_ERROR_FIFO_FULL 9 | FIFOis full
CANAL_ERROR_FIFO_SIZE 10 | FIFO size error
CANAL_ERROR_FIFO_WAIT 11

CANAL_ERROR_GENERIC 12 | Generic error
CANAL_ERROR_HARDWARE 13 | A hardware related fault.
CANAL_ERROR_INIT_FAIL 14 | Initialization failed.
CANAL_ERROR_INIT_MISSING 15

CANAL_ERROR_INIT_READY 16
CANAL_ERROR_NOT_SUPPORTED 17 | Not supported.
CANAL_ERROR_OVERRUN 18 | Overrun.
CANAL_ERROR_RCV_EMPTY 19 | Receive buffer empty
CANAL_ERROR_REGISTER 20 | Register value error
CANAL_ERROR_TRM_FULL 21

CANAL_ERROR_ERRFRM_STUFF 22 | Errorframe: stuff error detected
CANAL_ERROR_ERRFRM_FORM 23 | Errorframe: form error detected
CANAL_ERROR_ERRFRM_ACK 24 | Errorframe: acknowledge error
CANAL_ERROR_ERRFRM_BIT1 25 | Errorframe: bit 1 error
CANAL_ERROR_ERRFRM_BITO 26 | Errorframe: bit O error
CANAL_ERROR_ERRFRM_CRC 27 | Errorframe: CRC error
CANAL_ERROR_LIBRARY 28 | Unable to load library
CANAL_ERROR_PROCADDRESS 29 | Unable get library proc address
CANAL_ERROR_ONLY_ONE_INSTANCE | 30 | Only one instance allowed
CANAL_ERROR_SUB_DRIVER 31 | Problem with sub driver call
CANAL_ERROR_TIMEOUT 32 | Blocking call timeout
CANAL_ERROR_NOT_OPEN 33 | The device is not open.
CANAL_ERROR_PARAMETER 34 | A parameter is invalid.
CANAL_ERROR_MEMORY 35 | Memory exhausted.

CANAL_ERROR_INTERNAL 36 | Some kind of internal program error

CANAL_ERROR_COMMUNICATION 37 | Some kind of communication error

CANALMSG

This is the general message structure

unsigned long flags
Flags for the package.
Bit 0 —if set indicates that an extended identifier (29-bit id) else standard identifier (11-bit) is used.

Bit 1 —If set indicates a RTR (Remote Transfer) frame.

Bit 2 — If set indicates that this is an error package. The data byts holds the error information. id is set to zero. For format
see CANAL_IDFLAG_STATUS below.

Bit 3 — Bit 30 Reserved.

Bit 31 — This bit can be used as a direction indicator for application software. 0 is receive and 1 is transmit.

unsigned long obid

Used by the driver or higher layer protocols.
unsigned long id

The 11-bit or 29 bit message id.

unsigned char count

Number of data bytes 0-8

unsigned char data[8]

Eight bytes of data.

unsigned long timestamp

A time stamp on the message from the driver or the interface expressed in milliseconds. Can be used for relative time
measurements.

PCANALSTATISTICS

This is the general statistics structure

unsigned long cntReceiveFrames

Number of received frames since the channel was opened.

unsigned long cntTransmittFrames
Number of frames transmitted since the channel was opened.

unsigned long cntReceiveData

Number of bytes received since the channel was opened.

unsigned long cntTransmittData

Number of bytes transmitted since the channel was opened.

unsigned long cntOverruns
Number of overruns since the channel was opened.

unsigned long cntBusWarnings

Number of bus warnings since the channel was opened.
unsigned long cntBusOff
Number of bus off’s since the channel was opened.

CANALSTATUS

unsigned long channel_status

Bit 0 - TXError Counter.
Bit 1 - TXError Counter.
Bit 2 - TXError Counter.
Bit 3 - TXError Counter.
Bit 4 - TXError Counter.
Bit 5 - TXError Counter.
Bit 6 - TXError Counter.
Bit 7 - TXError Counter.
Bit 8 - RX Error Counter.
Bit 9 - RX Error Counter.
Bit 10 - RX Error Counter.
Bit 11 - RX Error Counter.
Bit 12 - RX Error Counter.
Bit 13 - RX Error Counter.
Bit 14 - RX Error Counter.
Bit 15 - RX Error Counter.
Bit 16 - Overflow.

Bit 17 - RX Warning.

Bit 18 - TX Warning.

Bit 19 - TX bus passive.
Bit 20 - RX bus passive.
Bit 21 - Reserved.

Bit 22 - Reserved.

Bit 23 - Reserved.

Bit 24 - Reserved.

Bit 25 - Reserved.

Bit 26 - Reserved.

Bit 27 - Reserved.

Bit 28 - Reserved.

Bit 29 - Bus Passive.

Bit 30 - Bus Warning status.
Bit 31 - Bus off status.

Message ID Flags (CANALMSG)

Each message has some flags set to give information about the events. The flags are defined as follow

Flag value Description

CANAL_IDFLAG_STANDARD | 0x00000000 | Standard message id (11-bit)

CANAL_IDFLAG_EXTENDED | 0x00000001 | Extended message id (29-bit)

CANAL_IDFLAG_RTR 0x00000002 | RTR-Frame

CANAL_IDFLAG_STATUS 0x00000004 | This package is an error indication (data holds error code,id=0).
CANAL_IDFLAG_SEND 0x80000000 | Reserved for use by application software to indicate send.

CANAL_IDFLAG_SEND may seam strange but can be very useful for software to use as a way to distinguish between sent and
received frames.

CANAL_IDFLAG_STATUS can be used by CAN controllers to report status data back to a host or an application. At the moment the
following error codes are defined. All status events consist of four data bytes where the first byte tell the status code, the second is
the receive error counter, the third the transmit error counter and the fourth byte is reserved and should be set to zero.

Flag value Description

CANAL_STATUSMSG_OK 0x00 | Normal condition.

CANAL_STATUSMSG OVERRUN 0x01 | Overrun occured when sending datato CAN bus.

CANAL_STATUSMSG BUSLIGHT | 0x02 | Error courter has reached 96.

CANAL_STATUSMSG BUSHEAVY | 0x03 | Error counter has reached 128.

CANAL_STATUSMSG_BUSOFF 0x04 | Deviceisin BUSOFF. CANAL_STATUSMSG_OK is sent when returning to

operational mode.
CANAL_STATUSMSG_STUFF 0x20 | Stuff Error.
CANAL_STATUSMSG_FORM 0x21 | Form Error.
CANAL_STATUSMSG_ACK 0x23 | Ack Error.
CANAL_STATUSMSG BITO 0x24 | Bitl Error.
CANAL_STATUSMSG BIT1 0x25 | Bit0 Error.
CANAL_STATUSMSG_CRC 0x26 | CRC Error.

ABOUT

CANAL is tightly coupled with the Very Simple Control Protocol, VSCP and the VSCP daemon. This is a protocol constructed for
SOHO control situations. The model has been constructed as a two-layer model so that the VSCP Daemon can also be useful for
people that are just interested in CAN and not in VSCP. You can find more information about VSCP at http://www.vscp.org.

http://www.vscp.org

